首页> 外文OA文献 >Large-Scale Low-Rank Matrix Learning with Nonconvex Regularizers
【2h】

Large-Scale Low-Rank Matrix Learning with Nonconvex Regularizers

机译:非凸规则化器的大规模低秩矩阵学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Low-rank modeling has many important applications in computer vision andmachine learning. While the matrix rank is often approximated by the convexnuclear norm, the use of nonconvex low-rank regularizers has demonstratedbetter empirical performance. However, the resulting optimization problem ismuch more challenging. Recent state-of-the-art requires an expensive full SVDin each iteration. In this paper, we show that for many commonly-used nonconvexlow-rank regularizers, a cutoff can be derived to automatically threshold thesingular values obtained from the proximal operator. This allows such operatorbeing efficiently approximated by power method. Based on it, we develop aproximal gradient algorithm (and its accelerated variant) with inexact proximalsplitting and prove that a convergence rate of O(1/T) where T is the number ofiterations is guaranteed. Furthermore, we show the proposed algorithm can bewell parallelized, which achieves nearly linear speedup w.r.t the number ofthreads. Extensive experiments are performed on matrix completion and robustprincipal component analysis, which shows a significant speedup over thestate-of-the-art. Moreover, the matrix solution obtained is more accurate andhas a lower rank than that of the nuclear norm regularizer.
机译:低等级建模在计算机视觉和机器学习中具有许多重要的应用。虽然矩阵秩通常通过凸核范数来近似,但是使用非凸的低秩正则化函数已显示出更好的经验性能。但是,由此产生的优化问题更具挑战性。最近的最新技术在每次迭代中都需要昂贵的完整SVD。在本文中,我们表明,对于许多常用的非凸低秩正则化器,可以得出一个临界值,以自动对从近端算子获得的奇异值进行阈值化。这使得可以通过幂法有效地近似这种算子。在此基础上,我们开发了一种不精确的近端分裂的近距离梯度算法(及其加速的变体),并证明了以T为迭代次数的O(1 / T)的收敛速度是可以保证的。此外,我们证明了所提出的算法可以很好地并行化,在不增加线程数的情况下几乎可以实现线性加速。在矩阵完成和健壮的主要成分分析方面进行了广泛的实验,显示出比现有技术有了显着的提高。而且,所获得的矩阵解比核范数正则化器更准确,并且等级更低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号